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ABSTRACT
Let T be a positive linear contraction in L? (1 < p < ), then we show that

lim{| 7° = T*'f||, =(1 —€)2¥»  (fELZ,e>0 independent of f)

implies already lim,_, || 7% — T"*'f ||, = 0. Several other related results as
well as uniform variants of these are also given. Finally some similar results in
L*® and C(X) are shown.

Introduction

Let T be a positive linear contraction in L'. In [8] D. Ornstein and L.
Sucheston showed that
M sup lim || T —T"*'f|,

1711 n—~o

is either O or 2. This surprising result opened a new direction of research. We
mention only the work of Derrienic [1], Foguel [2], and Lin [6]. These papers
deal mainly with Markov operators on L* but by duality both types of result
are equivalent. Derrienic [1] gives a probabilistic characterization of the 0-2
law in terms of the tail g-algebra of the associated Markov chain. Lin [6] gives
a decomposition of the underlying measure space in a “zero” and a “two” part.
Interchanging sup and lim in (1) the same was shown by Foguel [2]. Results of
the latter type will be called uniform “zero-two” laws. Usually the proof of a
uniform result is very similar, but sometimes also simpler than the correspond-
ing non-uniform result. This is the reason why we omit often many details in
the proof of the uniform results.
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Very recently Zaharopol [11] generalized the uniform variant of (1) to
LP-spaces (1 = p < ¢, p # 2). Katznelson and Tzafriri [4] proved the same for
all 1 = p <o« and gave also a simpler proof of Zaharopol’s theorem. The
paper of Katznelson and Tzafrin is the only one which does not use the key
idea of [8]. Zaharopol’s theorem involves the modulus |7" — T"*!| of the
operator 7" — T"*! (cf. Schaefer [10], p. 229):

lim sup | {T" =T f), <2=lm{|T" —T"*'{| =0.
n=x | fh,=1 nex
Forp=1wehave || |T"—T"*'| ||, = I T* — T"*"|||, but not for p > 1.

In this paper we study (1) and related expressions when the L!-norm is
replaced by L’-norms (section 1) or a supremum norm (section 2). The
Theorem of Zaharopol-Katznelson-Tzafriri will turn out to be a corollary.

The following constants play a crucial role:

((1+x)"+(1+y)”+(y—x)
1+ x7 + P

o, .= sup
0=x=y

P\ 1/p
) (1 = p<w).

Much is known about «, (cf. 1.4). For instance, we have a; = 2, a; = V3 and
V3 =a, <2 (p #1). We now have (cf. Theorem 1.1) for any positive linear
contraction T in L?

sup lim || 7" —T"*!f||, is either = a, or 0.

BA0=1 n—x
This result is sharp, i.e. a, may not be replaced by a larger number (cf. Example
1.3) and we may also interchange sup and lim (cf. Theorem 1.7). A more
beautiful result can be proved if the supremum is only taken over non-negative
f

sup lim || 7% —T"*'f ||, is either 2"” or 0.

k=1, /20 n—x

In the “zero” case one can show that

=0

P

1 =
Tl
n+1i§0 s

lim

n—-o

g_

implies already (Corollary 1.6)

lim || g = T°f |, = 0,

The last fact was observed independently by Zaharopol (private communica-
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tion). Moreover, his argument is constructive unlike ours. For p = 1 special
cases of this result were proved by Orey [7] and Ornstein and Sucheston [8]

(see also Greiner and Nagel [3]).
Very strong variants of the above results are given when 7 is also a compact

operator (cf. Corollary 1.8).
The proof of Ornstein and Sucheston is based on the representation

Tf=I+TYu+v (Jlull =27" ||v] small)
and the cancellation

NI —DTf || = §d—T)I+D)u+v |

G2

27 vi+ X
i=1

ﬂ:)CQ 0.
ivii—0
This method works with minor changes also in the case L® and C(X). This is

done is Section 2.
In the L?-case (1 < p < o) their method doesn’t work any more. In this case

we use the more difficult representation

n-1
Tf= 3 Tu+v  (ull,=n"", | v, smal)
=0

t
and the stronger cancellation

W=D = lu—Tu+U =Ty, =207 +2]v], = O

vi,—0

1. Positive contractions in L? (1 = p < w)

In the sequel (Q, A4, 1) will be a o-finite measure space and T will be a
positive linear contraction in L? = L? (2, A, u) where 1 = p < oo will be fixed.
We denote L% := {f€L?: fz 0}. For fEL”, f* denotes sup(f, 0).

1.1. THEOREM. The following conditions are equivalent:
(@) lim, ., | 7%~ T"*'f]|, =0 (fEL?).
(ii) There exists ¢ > 0 such that

lim | 7°f = T""'f |, =2"(L —¢)  (JELL, | /I, =D
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(iii) There exists € > 0 such that
lim || 7%~ T"*'f |, S(1 —&)a, (FEL’, || f]l, = 1).
(iv) There exists ¢ > 0 such that

inf |(Tf=T"*'N*,=0-¢e) (ELL, | fl,=D.

ProOOF. (i)= (i1) and (i)=> (iii) are obvious. Assume now that (ii) holds and
let fEL%, || f]l, =1 be given. In order to prove (iv) we have to find an e’ >0
(independent of f) and n €N such that

(1) (T =T HH,=1—¢.

Since (|| 77 || ,)nen is decreasing a : = lim,_., || 77/ ||, = 1 exists. By (ii) there
exists n EN such that (J > 0 will be specified later)

| T =T f, =1+ —e)2", | T/, Sa+d.
Because of
@ =T D g+ (@ =T g = | T = T 7|

=141 —¢&)?2
we have either

() T =T D", =(1+6)1 —e)
or
3 T =T ", =1+ X1 —e).

From now on we assume that § > 0 was chosen so small that

(1+0X1l —¢e)=1-—¢/2, d=¢l8
and we set
&= min(e/8, 1 — (1 — (e/4)?)V?).

Then, in case (2), (1) obviously holds. Assume now that (3) holds. Denoting
u:= inf(T"f, T"*'f) we have

Null,z U7 S, — 1T —ull,
4 =T f), — T f=TNH |,
>a—(1—e/2).
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Ifa=1—e¢/4then
W(Tf=T"*""N N, = | TSfl,Sa+d=1—¢e/8=1—¢.
If « =2 1 — ¢/4 then (4) implies
TSP =T =T N +uy 2 (T =T )" 1P+ u
and we get
TS =T D= NTFN — Nullf 1= (e4) =(1-¢).

Hence (1) holds in all cases for the above choice of &'. Assume now that (iv)
holds. Obviously it is enough to prove (i) for fELL, || ]|, = 1. Let kEN be
so large that

g:= (1+ 3k +1)~2(e/2))"? =1+ ¢/2(1 — &)
and denote
ag:= lim || T*f || ,.
We choose ni, n'{ €N such that
N7 N, S gea (TN =TT, = =) | TS ||,
Setting n, := nj + n'| we have
NIl =gea, (T —T"HNT |, =(1 —&)gao
Now we define
u, = inf(T™f, T"*f), vyi= Tf—u =(Tf—TH' ).
Since || 7"*"f ||, = o« we have for any n EN
N7 2 T, — | T 1, Z a0 — (1 — e)gao = a1 — g + ge) Z bea.

Replacing /by u, and aq by o, := lim,_, || "4, ||, = e, we can apply the
above construction once more to find n,E N such that u, : = inf(T"u,, T 'u,)
satisfies

o= lim || T"w, || = lea; = ()ay
Continuing in this way until step k£ we find n,, . . ., n, such that the u, . .., %
defined by

Ug:= f, u;:= inf(Tu;_,, T 'y;_))
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satisfy
) lim || T || Z(e)ay (O=Zi=k).

Since T is positive it follows that
Tru, S inf(T* "y, Ty, )
SAnf(Tr-trtny, , Troctntntly  Trotatnd2y )
Continuing in this way we obtain
(6) Tru, < inf{T™+ - +m+nif. 0 < j < k).
Now we define
m=n+---+mn, g:=T""f-u (0=j=k).

Then we have

k k k
k+ )T =3 T +g)= 3 T+ ¥ T g,

j=0 i=0 Jj=0

Thus, if we denote

then we have the fundamental representation formula

k
Tm'f= z Tirl +S| (rl, SIEL?,_).

i=0
Moreover,
4+ sE=(r +5)° =(T™f)?

implies

1 P
I U2 S U T = N 03 = Gaaor = (s )

e\ kp e\
§<1+£(k+1)—‘°<—2'> —(k+1)_‘”<5> )wﬁ
Setting y:= (1 — ¥k + 1) ~7(¢/2)*)"? < 1 we have shown that

Isill, Evae=y £,
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Replacing f by s, then by the same construction there exists #, €N and
75, $,€ L% such that

T 2 Thts Il S isl =710,
Defining now
myi= m +m, r=~rkh+T"r
we have
k k k
Tmf = Tmtmf= EO T™T'r, + EO T +s,= z Try+ s,

Continuing in this way we obtain an increasing sequence (m,) in N and
sequences (r,), (s,) in L% such that

k
Tnf=3Y Tratss, sl =27" 1l
i=0

Because of
ko ko \p
DEVEAY é( ) T'rn> =T
i=0 i=0
there exist 0 = i, = k such that

I Tr |

P <<
p =

IT™f 17 =

x| -

k+1
Defining now

m¥:=m,+i,, r¥="Twr, s¥= T,

we obtain

k
Tmif= 3 Trt+s¥, |kl <k, sk, =

i=0

Finally, we have

7 = TS | - T)(éo 73]

T 1T =D)s |,
p

S rE-T""r¥|, +2v

= 2k=VP + 2y,
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Since y < | and since ( || 77f || ,) is decreasing the assertion (i) follows.

The proof is complete if we can show that (iii) implies (i). Surprisingly this
part of the assertion lies rather deep. To show it we must use the implication
(iv)= (i) twice.

We observe first that there exists 0 = x = y such that

((1 +x)+(1+y)y+@ —x)”)”l’
a, = ’
’ 1+ x7 +y”

otherwise there would exist 0 = x, = y,, lim y, = o such that

<(1 +xn)p + (1 +yn)p +(yn _‘xn)’J)l/p
1+ x2 + y '

a, = lim

n—ow
But the last limit equals | contradicting

((1+0)P+(1+1)p+(1—0)v
1+07 + 17

>
Ay =

I/p
) = (1420 )P > 1,

Assume now that

7 sup  inf min( || (T =T""'N"*|,, | (T =T H*|,)=1

JELL | fll,=1 nEN
Then for any 0 <e =< 1 there exists LEL%, || £, |, = 1 with
T =T ) Nzl -6 |TL-T""f)"|,Z1—¢ (n€EN).
Denoting
Uy, = (T, T" 1), Vaei= Inf(T,, T"*2f), g&.:= yf. — Tf, + xT*f,

we have for any n EN

uby + (T, = T )P St + (T — T L)) = | T2,

Nne 12 = NTA N — NI =TT =1—(1 — &) = pe,
and analogously

I Ve ll, = (pE)"™.
Since

(ar — Bs —yt)* = (ar — Bs — max(a, y)min(r, t))* (r,s,tEL%,a, B,yER,)

= (ar — max(a, f)-max(r, s) — max(a, y)-min(r, t))*

we have
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|T7g, — T"*g. | = YT, —(1L + )T fo + (1 + )T 2 f, — XT3, |
Z T, —xT"f, = (1 + )T f)*
F((1+ )T, — (1 + )T f, — XT3 1) *
A+, —yTf — (L + )T 2 )
20T, —xT"f, = (L + y)v,)*
(10T 2 = (L Py rre — (14 XDy 12,)

+((1 +y)Tn+lf; —(1 +y)un,e _(1 +y)un+l,e)+
and therefore

I 7. —T""'g, ||}
Z |OT, —xT" L = (U +ya)* i)
+ @+ NI, = A+ 2o, = (L4 Xtk |12
APV TS = e = Unsr)) " |17
ZONTHN, —x T L, A+ ) N Vae 1))
FA+NT 2Ll = A+ N tnsre |, — A+ %) | s [1,) 1)
FA+EPPANT el = Ntne o = N thsre 1))
Z (I —&)—x = (1 +y)pe)'?)*)
+ (1 +x)(1 —&) — (1 + y)pe)'? — (1 + x)pe) )"y
+(1+p)((1 — & —(pe)'"? — (pe)'"?)*)".
Hence
(8) lifgl%nfjgg I T7g. — T"*'g |, 2 (v — x)” + (1 + x)* + (1 - y)?)"°.
Let us now estimate || g, ||,. Since f; — v, and T2/, have disjoint carrier we
obtain
L 17 Iy = v + X2 1, + 9 [ vae 1) + 1 7% 112
= (O 1L = ou U5+ I THLUDY? +3 0, 1) + N TH N2
S +x7)"7 + y(pe) Py + 1,
® limsup || g ||, = (" +x? + )7,

[ ad!]
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Now (8) and (9) together show that (iii) cannot hold if (7) is fulfilled. Thus, by
contradiction, (iii) implies the existence of ¢’ > 0 such that

in£ mln( " (Tnf__ Tn+1f)+ "p’ " (Tnf_ T"+2f)+ “p) é 1 _ 8'

ne

(10) ELL, | fl, S D).

Next we want to deduce from (10} that there exists £” > 0 such that
(11) 32£||(T"f— "2 )t |,=1—¢" feLs, | fl,=D.
Tothisend let f€L%, || f||, =1begiven. If [[(TYf —T"**N* |, =1—¢'/2

orinf,en | T77f ||, = 1 — ¢'/4 then any 0 < e&” = ¢'/4 will do it. In the other case,
by (10), there exists m, €N such that

Iy =T N, s 1 -2, inf | T,z 1-e/4.
ne

Denoting
u:= inf(T™f, T™*1f)
we have
| T"u |? +(T(T™f = TN = (T + (T - T )Y
= 1Ty,
WTullzz N TS — N TT™f = TN
(12) Z(1—¢'/4)y — (1 —¢€'2) z¢'/4.

We now choose m,EN so large such that

(13) inf || 774w ||, Z (1 = 4 | T |,

By (10) there exists m; such that either

(14) | (T — Tmrmr )+ ||, = (1 —e'12) | T™u ||,
or
(15) | (Tt mu — Tmatmtiyy+ |, S (1 —e'72) || T™u |,

In case (14) we denote

vi= inf(T™* ™y, Tm*ms*2y)
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and by now well-known arguments we have
v I,z | Tt ||, — [ (T — Tt me )+ ),
z(1—¢e/4—=14+e2)| T™u |,
Z (e'/4)%
Hence setting m := m, + m, + m,; we have
T =T N S | T =y 5= I T L — v 2= 1~ (e/4)»

=1-(e'9)~
In case (15) we denote

d:= inf(T™ ™y, T™* ™ y),

Replacing fby || 7™u ||, 'T™u and u by || T™u || ~'d in (12) we get

(16) | T gz T :(%) (nEN).

e
4
Sinc T"u < inf(T™*"f, T™*"*1f) we have
4 inf(Tf, T+ f, T"*f),  m:= m, + m, + my.

In particular

(T = T2 g N T —a |25 | T2~ Na 2 < 1—(e74p.
Hence, if we choose

0<e”=min(e'/4, 1 — (1 — (&'/14)%)"?)

then (11) holds in all possible cases. By the already shown implication
(iv)= (1), (10) implies

lim | T°f — T"**f|,=0 (fELP")
and the assertion (iii)=>(iv) follows from the subsequent proposition, which
itself is a consequence of (iv)= (1).
1.2. ProPOSITION. If

lim | 7% — T/, =0  (fEL?)

and if there exists ¢ > 0 such that
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lim | Tf—=T"*'f|,=2~¢ (fEL", | [, =1

then we have already
im || T — T"*'f |, =0  (fEL?).
ProOOF. Assume that 1.1(iv) does not hold. Then for any 0 <J =1 there
exists FELL, || f5 || =1 with

lin; N (Th—T"' 5 |, =1 —d)e.

Setting
U= Inf(T7"f, T"*'f), &= fi— Tfs
we have
s 15 S N T 05— I — T+ 1) |5 <6
and therefore
| Tgs = T g5 ll,= | 77 + T2 = 2T+ f |,
2 || 277 = 2T Sy, — | T2 = T |,
=20 T = s F + 1 Ty = s )
— T2 = T
2 200 7%y = 1 s 1,
T sl — Nuns 1))
— T2 =T,
Hence for any 0 < J <1 there exists n; EN such that
I 775 — T"*gs |, Z2((1 =87y + (1 —=8"7))"" =6 (nzny)
contradicting

limsup || T"g —T"* g |, =2 —¢)|gll, (EELP).
It may very well happen that || Tf —~ T"*'f||, =2 foran fEL?, || f|| = 1.
On the other hand, the next example shows that condition 1.1(iv) cannot be
weakened. For an operator Son L?, ||| S |||, will be its operator norm.
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1.3. ExamMpLE. Let Q:= {1, 2, 3} be endowed with the counting measure
u and 7: Q— Q be defined by

(=2, 1(2)=3, 13)=1.
Then
Tf:= fo1
defines an isometry in L?(u) for any 1 = p = «. Hence if
lim || Tf—T"*'f||,=0

then f = Tfand therefore f = 1.

In order to calculate the operator norm || 7" — T"*!||, = || — T |||, we
identify functions on Q with vectors in R3. We have

Ny, 2)— T, p, 2) |, =CUx —yPP+ Iy —z{” + [x —z|?)*
(1)

(1 =p<x)

Choosing z = — 1, 0 = x =y we see that ||] — T |||, = «,.
Let now (x, ¥, 2), || (x,¥,z) ||, = | be such that

Ny, 2) =Ty, 2) 1, = WL —Tll,-

By (1) x, y, z cannot all have the same sign. Since the right hand side of (1) is
symmetric in x, y, zwe may assume thatz =0 =x =y.lf | <p <o thenwe
must have z <0, otherwise

Nd—TXx,y,2)l,=Ux—ylP+ D" =27 < (142771
= —T)Q2', -2V Q).
Setting x' := x/ —z, y' = y/ — z we obtain

=Tl = 1217} 0x =12+ 1y + 117+ %+ 117

(Ix’ +1P+ |y +11P+ |x —y’|">”l’
= =ap

L+ X7+ P
provided 1 <p <oo.If p=1thena, =2and ||/ — T |||, = o, is trivial. Since
the adjoint operator T* is of the same type, i.e.

T =fe1),
we have also
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W =7*l, =2, (1=p<o)
Hence
W =Tle=NI—T*[ =2

1.4. Estimates for o,. We have already seen in the proof of Theorem 1.1
that

(@ (1+2?P" Y7 =aq,.
Let T be the operator of Example 1.3. Then

ap=WI=TH,=W—-T*ll,=e,

implies

(b) a,=a,(1<p,qg<o0, l/p+1/g=1).
By the interpoation theorem of M. Riesz [9] we have

(c) p—loga, is a convex function on [1, co[. Note that Riesz’s original
theorem is valid also for real L? space, whereas Thorin’s generalization holds
only for complex L? spaces.

Since I — T is a normal operator on L? we have

I —T||l,=sup{|A|: AEC eigen value of I — T}.

This is well known for the operator norm on the complexification of L2, but for
p = 2 the complex and the real operator norm are equal. Obviously 7 has the
eigen values

1 , €2'"/3, 6,417:/3

and therefore I — T has the eigen values
O, 1 — e2i7zl3’ 1 — e4in/3‘

Finally we get 3

(d) = |1— ¥ = V3.
From (b), (c), (d) one gets an upper estimate for «,. In particular we have

€) o, <2(1<p<w)
Since, for any fELL, | T =T "*'f||2 < | T"f||Z =2 | f||? we obtain the
following “0-2"7” law.

1.5. COROLLARY.
sup lim || T°f — T"*1f |} €(0, 2V7}.

fELA G f,51 n—o

1.6. CorOLLARY. If one of the conditions in Theorem 1.1 holds, then for
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any fE€L? the LP-convergence of A,f:= (1/n)Z!G Tf implies the
Lr-convergence of T"f (both limits are of course equal). If p>1 then A, f
converges always in L? by the mean ergodic theorem.

Proor. By Krengel [5], p. 73 we have the decomposition
M=N+F
where

M= {fEL": lim A,,fexists} ,

N:= {f—Tf:. feL"},
F:= {feL” Tf=f}.

Hence we need to prove our assertion only for f€ N and fE€ F. For f€ F this is
trivial and for f€ N this follows from Theorem 1.1.

We have the following uniform variant of Theorem 1.1 and Corollary 1.6.

1.7. THEOREM. The following conditions are equivalent:
(i) lim,. || 7" —T"*|, = 0.
(i1) There exists € > 0 and n €N such that

| =T = —e2""  (ELL, NS, =D
(i) Wm, . | T" =TI, <a.
(iv) inf,en Supsers, sy, <1 I (Tf=T"'H* |, <L
If T is also uniformly ergodic (cf. Krengel [5], p. 86) and one of the above
conditions is fulfilled, then there exists a projector P: L — L? with || P |||, = 1
and

tim || 7" = P, = 0.

ProOF. The proof of Theorem 1.1 can be made “uniform” by experienced
readers. For more details the reader is referred to our forthcoming paper where
the uniform result 1.10(b) is proved.

For the proof of the second assertion we note first that N:= {f — Tf. f€L”}
is closed in L? by Krengel [5], p. 87. We can write

LP=N®F, F:={f€EL"Tf=f)

by Krengel [4], p. 73. Thus the operator (/ — T) is a continuous bijection of the
Banach space N into itself. Hence by the open mapping theorem there exists a
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bounded operator S: N — N such that (/ — T)S = I. Using now 1.7(i) we get
limsup (|| T"g | -8 €N, |l gll, =1}

n-+*oo

=limsup { |[(T" ~T"*")Sg |,:g€EN, llgll, =1}

n—+ow

=0.

Recalling the decomposition L? =N ® F the assertion with P =
lim,_ (1/n) 272! T is now immediate.

If 7 is also compact (quasi-compactness would be enough), then much more
than Theorem 1.1 and Corollary 1.6 is true:

1.8. COROLLARY. Assume that T™ is also a compact operator for an ny€EN.
Then the folowing conditions are equivalent:.

(@ lim,, || 77 — T ||, =0.

i) lim, ., || T — T"*'f ||, <2"* (FELL, || f], = 1).

(iii) lim,, | T — T"*1f ||, <a, FEL?, | f]I, = 1).
Maoreover, if one of the above conditions is fulfilled then there exists a projector
P: L? — L* with finite dimensional range, || P ||, =1 and

lim || 7" = P ], = 0.

ProoF. Let X (resp. X, ) be the closure in L” of

{T™f feL?, | fll, =1} (resp. {T™f: fELL, | fll,=1)D.

By our assumption both sets are compact and the functions

{pn(f):= " (Tn - T"+l)f"p

are continuous on X and X,. The sequence (¢,) is also decreasing. Hence
¢ .= inf, g, is upper semi-continuous on the compact sets X, X . If now (iii)
holds then sup ¢(f): f€ X} < a,. Furthermore {g, <(1 + 27~ ")""#} defines an
increasing sequence of open sets covering X.

By compactness there exists # €N such that ¢, <«,. This means exactly

m Tn+n0 _ Tn+no+l "I <ap.

Hence 1.7(ii1) is satisfied. Replacing (ii1) by (ii) and X by X, one can see by the
same method that (i1) implies 1.7(ii). Since T is also uniformly ergodic by
Krengel [5], p. 89, the assertion follows from Theorem 1.7.
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Finally we want to show that a recent uniform “0-2” law of Zaharopol [11]
for 1 < p <, p # 2 and of Katznelson and Ttzafriri [4] in the general case
follows from Theorem 1.7. To this end we recall that the linear space of all
differences of positive operators in L? is a vector lattice under its canonical
order (cf. Schaefer [10], p. 229). In particular the infimum 7T,AT, and the
modulus | T, — T5| := T, + T, — 2T ,AT; of two positive operators exist.

1.9. CoROLLARY. If limsup,..|||7" — T"*'| ||, <2, then we have
lim, ., | 7" = T"* ||, = 0.

PrOOF. By Zaharopol [11], Proposition 4.2 there exists d > 0 such that, for
any f€L, with || f, =1, either
1) (T ), = 1-672
or
Q@ 1T, z1=62, | (T =T"AT"*)f|| =1-6
holds. In case (1) we have
| T =T+ 2= (T =T NN+ W@ =f=TH N}
=141 -46/2).
In case (2) we put u := inf(T"f, T**'f) =(T"AT"*")f. Then
Null,z I TSN, — (T =TAT*O)f |, z1-0/2—(1 —6)=4/2
implies
I =T =T —ulf+ N T ~ul;
=NTFNE— Nullp+ 0T 00— Huli?
=21 —(8/2)%).
Thus condition 1.7(ii) holds in all cases.

1.10. REMARKS. (a) In a forthcoming paper we will show a non-uniform
variant of Corollary 1.9, i.e. the existence of an £ > 0 with

imsup || |T" — T**'|f||,<2—¢ (fEL?)

implies already
lim | (T" = T"*)f ||, =0.

This result cannot be shown by the method of Katznelson and Tzafriri [4].



Vol. 59, 1987 ZERO-TWO LAW 25

(b) In that paper we will also show that
limsup || |77 = T"*'| |, <2

H—=
implies the stronger conclusion

tim | 77 = 7+ ], = 0.

2. Positive contraction in C(X) and L*>

In this section B will be either the Banach space of continuous functions on a
compact space X or the space L* with respect to a g-finite measure space. We
denote by B, the cone of non-negative elements. Of course, the L~ case is a
special case of the C(X) case, by the Stone representation, but the point is that
the proofs can be done directly in L>,

2.1. THEOREM. For a positive, linear contraction T: B — B the following

conditions are equivalent:.
(i) lim,. [|Tf—T"*'f|| =0(f€B).
(ii) There exists € > 0 such that

lim | T =T 'f| <l—¢ (f€B,, | £} =D).

(iii) There exists € > 0 such that

lim || T"1 — T+ || <2

and
lm | Tf =T/ <2A1—-¢) (E€B, |l =D
PrROOF. (i)= (ii) and (i)= (iii) are obvious. Assume now that (ii) holds and

let f€B,, || fI| =1 be given. Then there exists n, €N such that

(Tf =T N Sl—e, (T f=THT| =1-e
For h:= inf(g, T"f, T"*'f) we have

Ihl<e, IT"f—h|Sl—e |T"*f—h|=1-c
Hence, putting

U := sh, v,:= ¥ T(T"f—h)+Tn*'f—h)
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W\ f=4Th+T(T"f—h)y+h+ (T f—h)=u+ Tu,+v,
and

lull =2, vl SKITS A+ TS =R|)=1-e.

From now on the proof is essentially the same as in [8]. Replacing /by v, the
above construction yields #,, v,E B, #,EN such that

T”2+’v1 = 122 + Taz + vy,

fal =g lnl,
Defining

Ivalf =@ =&l

n, = n1+ﬁ2+1, U, .= ﬂ2+ T’iz+lu1
we have

Tt f=uy+ Ty + vy, ] Sde+de(1—¢), [l 201 —e)

Continuing in this way we can construct sequences (1;), (v;) in B, and (n;) such
that

T —u+ Tu +v, vl S —e),

gil .
u,=-Y (l—¢gy=4i
2,%

Let now 8 > 0 be given. Choosing i so large such that (1 — &)’ = J and setting
m:=nm+1, r:=

U, S8 := V;
we have the representation

T"f=n+Trn+s, |nll =5 ls| =6
Replacing fby r, we can find m,EN, r,, §;E B, with
Thr=r+Tr+$ |l 25 (S]] =9
Defining m, := m, + my, 5,:= T™s, + (I + T)5,,
Trf=(I+Dr+s, ||z |5 =20.
Continuing in this way we can construct (r,), (s;) in B, and (m,) such that
Tf =1 + T)*r + 54,

Irell =275 lscll =ko.
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In particular, for even kK €N we have
| T f =TS || = | =TI+ T)re +5¢ |
Shsell+0nl+ 0T )

- e

k
=ké+2'* +2-’<2< >
k/2

k
+ X
i=1

since (¥) — (;%,) is increasing on 1 =i = k/2 and decreasing on k/2 i = k.
Choosing 6 > 0 sufficiently small we can find for any even K €N an n €N such
that

iry-ry s, ).

By Stirling’s formula the expression on the right side tends to 0 and (i) follows.
Assume now that (iii) holds and let 0 < g = 1 be given. Putting f:= g — 1
we have

1A=t g=3f+14
Applying (iii) to f'we get
lim | T%g — T"*'g | < lim || T% — T+'f || + lim §|| 771 = T"*'1 |

=1-—¢
where

gi=¢—limj|T"1—-T"*"1| >0.

Hence (ii) is satisfied if we replace ¢ by the above ¢'.
2.2. REMARKS. (a) It is an open question whether the condition
lim | 7"} - T | <e
can be removed.
(b) Analogues of Corollary 1.6, Theorem 1.7, Corollary 1.8 hold also in the

present setting with no change of proof, since the special properties of
L?-norms were not used there.
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(c) It is a natural question whether Theorem 2.1 holds for general Banach
lattices. We have no counterexample. Under additional conditions on T
Greiner and Nagel [3] have given a different kind of “zero-two” law for very
general Banach lattices. Recently H. H. Schaefer (private communication)
generalized the Zaharopol-Katznelson-Tzafriri Theorem (Corollary 1.9) to
arbitrary Banach lattices.
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