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ABSTRACT 

Let Tbe a positive linear contraction in L p (1 < p < ~), then we show that 

lim ][ T P f -  T n + ' f  ]] p < (1 - 8)2 l/o ( fE L~, ~ > 0 independent off) 

implies already limn_® II Tnf - T~+ lf[lp = 0. Several other related results as 
well as uniform variants of these are also given. Finally some similar results in 
L ~ and C(X) are shown. 

I n t r o d u c t i o n  

Let T be a positive linear contraction in L1. In [8] D. Ornstein and L. 

Sucheston showed that  

(1 )  sup lim ][ T y -  T ~ + i f  Ill 
Ilfll ,=<1 n - o o  

is either 0 or 2. This surprising result opened a new direction of  research. We 

ment ion only the work of  Derrienic [l ], Foguel [2], and Lin [6]. These papers 

deal mainly with Markov operators on L °° but by duality both types o f  result 

are equivalent. Derrienic [ l ] gives a probabilistic characterization o f  the 0-2 

law in terms of  the tail a-algebra o f  the associated Markov chain. Lin [6] gives 

a decomposit ion of  the underlying measure space in a "zero" and a " two" part. 

Interchanging sup and lim in (1) the same was shown by Foguel [2]. Results of  

the latter type will be called uniform "zero- two"  laws. Usually the proof  of  a 

uniform result is very similar, but sometimes also simpler than the correspond- 

ing non-uniform result. This is the reason why we omit  often many details in 

the proof  of  the uniform results. 
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Very recently Zaharopol  [11] generalized the uni form variant  o f  (1) to 
LP-spaces (1 < p < oc, p # 2). Katznelson and Tzafriri [4] proved the same for 

all 1 ___< p < oc and gave also a simpler proof  of  Zaharopol 's  theorem. The 
paper  of  Katznelson and Tzafriri  is the only one which does not  use the key 
idea of  [8]. Zaharopol 's  theorem involves the modulus  IT" - T n+11 o f  the 
operator T n - T "÷1 (cf. Schaefer [10], p. 229): 

lim sup III T" - Tn + 11 f lip < 2 = lim tll T" - T~ +l III = 0. 
n--~c II flip_-< 1 n - - ~  

For p = 1 we have III I T ~ - T~ +ll II1~ -- III Tn - Tn ÷ ~ IIIp b u t  not for p > 1. 
In this paper we study (1) and related expressions when the L~-norm is 

replaced by LP-norms (section 1) or a supremum norm (section 2). The 

Theorem of  Zaharopol-Katznelson-Tzafr i r i  will turn out to be a corollary. 

The following constants play a crucial role: 

( ( l + x ) ' + ( l + y ) ' +  ( y - x ) ~ , / p  
ap :=  sup (I < p < oo). 

<x< 1 q - x  p + yP 0 =  = y  

Much is known about % (cf. 1.4). For instance, we have at = 2, ct2 = x/3 and 

x/3 _-< ap < 2 (p ~ 1). We now have (cf. Theorem 1.1) for any positive linear 
contraction T in L p 

sup lim II T ~ -  T~+~f l l ,  i s e i t h e r > % o  r0 .  
IlfUp-<_ 1 n - - ~  

This result is sharp, i.e. ap may not be replaced by a larger number  (cf. Example 

1.3) and we may also interchange sup and lim (cf. Theorem 1.7). A more  
beautiful result can be proved if the supremum is only taken over non-negative 

f.- 

sup lim II T n f  - Zn + i f  II 
U flip_-<- 1, f>_-0 n--o~ 

In the "zero" case one can show that 

lim g - ~  
r l ~ O G  

implies already (Corollary 1.6) 

lim II g - T~f I1~ = 0. 
n ~ o o  

is either 2 I/p or 0. 

1 ~ Tfp=O 
n + l i = 0  

The last fact was observed independent ly  by Zaharopol  (private communica-  
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tion). Moreover, his argument is constructive unlike ours. For p = 1 special 
cases of this result were proved by Orey [7] and Ornstein and Sucheston [8] 

(see also Greiner and Nagel [3]). 
Very strong variants of  the above results are given when Tis also a compact 

operator (cf. Corollary 1.8). 
The proof of Ornstein and Sucheston is based on the representation 

Troy = (I + T)"u + v (11 u II < 2-" ,  II v II small) 

and the cancellation 

II (I - T)T~fll = II q - T)(I + T)~u + v II 

- - < 2 ' - ~ +  I lvl l  + 
i=1 i - 1  

0.  
t l  ~ 0t) 

This method works with minor changes also in the case L °~ and C(X). This is 

done is Section 2. 
In the LP-case (1 < p < oo) their method doesn't work any more. In this case 

we use the more difficult representation 

n - - I  

Tmf= ~ Tiu + v (11 u lip --< n-l/p, II v II, small) 
i=0  

and the stronger cancellation 

II ( t  - T ) T m f l l p  = II u - T"u + (I - T)v  II, ~ 2 n - ' / "  + 2 II v II, , _ ~  0. 
II v II ~ 0  

1. PositiVe contractions in L p (1 ~ p < ~ )  

In the sequel (f~, A, It) will be a a-finite measure space and T will be a 

positive linear contraction in L p = L p (~,  A, It) where 1 _-< p < c~ will be fixed. 

We denote LP+ := { fELP:  f >  0}. For f ~ L P , f  + denotes sup(f, 0). 

1.1. THEOREM. The following conditions are equivalent: 

(i) l im,_~ II T " f -  T"+'fl lp = 0 ( f ~ L , ) .  
(ii) There exists e > 0 such that 

lim II Tnf - Tn+'fllp < 2'/P( l - e) ( f E L $ ,  I[ fl ip < 1). 
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(iii) 

ZERO-TWO LAW 

There  ex i s t s  e > 0 such  that  

lim II T " f -  T " + t f l l p  =<(1 - - e ) %  
n ~ O 0  

(iv) There  ex i s t s  e > 0 such  that  

inf  II ( T n f  - T " + ' f )  + lip =<(1 - - e )  
n ~ o 0  

11 

( f ~ L ' ,  II f i l e  ~ 1). 

C f ~ t ¢ ,  II f l ip  ~ 1). 

and we set 

e'  : =  min(e/8, i - (1 - (e/4)P)~/P). 

Then, in case (2), (1) obviously holds. Assume now that (3) holds. Denoting 

u : =  inf(T"f, T"+~f) we have 

II u I1,>_- II T " + ' f l l p  - 

(4)  = II T" + t f  I1~ - 

> a - (1 - e/2). 

II Tn+'f - u  lip 

II ( T " + ' f  - T ~ f )  + II, 

we have either 

(2) 11 ( T ~ f  - Tn+lf)  + lip ~ (1 + 8)(1 -- e) 

o r  

(3) II ( T n + ' f  - T " f )  + II, ----< (1 + 6)(1 - e). 

F rom now on we assume that a > 0 was chosen so small that 

(1 + 8)(1 - e)_-< 1 - e/2, 8 =< e/8 

= (  + <  1 8 ) P ( 1 - e ) P 2  

PROOF. (i) =* (ii) and (i) =* (iii) are obvious.  Assume now that (ii) holds and 

le t fEL~_,  [] f[[p _-< 1 be given. In order to prove (iv) we have to find an e' > 0 

( independent  o f f )  and n E N such that 

(1) II (T~f - Tn+ ' f )  + lip --< 1 - e'. 

Since ( ][ T~f [[ p)n EN is decreasing a : = lim._o~ [] T~f [[ p --< 1 exists. By (ii) there 

exists n ~ N such that (~ > 0 will be specified later) 

II T~f - Tn+'fI lp  a ( 1  + a ) ( 1  - e ) 2  '/p, l[ T~fllp = < a + d .  

Because of  

II ( T " f  - T" + ' f )  + Ill + II ( T" + ' f - T" f )  + II# = II T " f  - T"+'f l l f f  
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I f  a < 1 - e/4 then 

II (T"f - T"+tf) + llu --< II T"fllu <-- ,~ + a <= I - e/8 <-_ I - e'. 

If a >_- l - e/4 then (4) implies 

IT"f l  u = ( ( T " f -  T n+ l j 0+  + U) p >= I(T~f - Tn+l j0+  I p + U u 

and we get 

II ( T " f -  T"+tjO + II; --< II T" f l I ;  - II u I1# ---< 1 - (e/4) u < ( 1  - e ' )  u. 

Hence  (1) holds in all cases for the above choice of  e'. Assume now that (iv) 

holds. Obviously  it is enough to prove (i) for f E  LP+, II f II u --< 1. Let k ~ N be 
so large that 

q "= (l + ½(k + l)-P(E/2)kP) lip ~ 1 + e/2(1 - e) 

and denote  

Ot 0 : ~  

We choose n't, n'~ ~ N such that 

lim II r~f  Ilu. 

JJ T"VII, < q oao, J[ (T":(T""oO - T":+'(T""OO) + [[, _-< (I - e)[[ Tn"fJJp. 

Sctting n~ := n'~ + n"l we have 

II T",fll, <=qo,~o, [I ( T " , f  -- T",+tf)  + I1,, -<_(1 -e)q,~o. 

N o w  we define 

u~ : =  inf(T",f, T",+~f), vt : =  T " , f -  ut = ( T " , f -  T",+I]) +. 

Since II T"'+"fllp >= ao we have for any n E N  

II T"u, II. >= II T"'+"fll v - II T"v, II. >-- ,~0 - (1 - e)qao = a0(1 - q -t- qe) > ½eao. 

Replacing f b y  Ul and a0 by at "= l im ._~  ]] T"ul ][p> ½eao we can apply the 

above construction once more  to find n2 E N such that u2 : = inf(T".ul. T ",+ ~ut) 

satisfies 

a~ : =  lim [[ T"u2 U > ½~oq > (~)2a0. 
n ~ c t ~  

Continuing in this way until step k we find nl . . . . .  nk such that the Uo . . . . .  Uk 

defined by 

u0 :=  f ,  u i : =  i n f ( T ' u i - i ,  T",+lut_0 
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satisfy 

(5) 

Z E R O - T W O  L A W  

lim II T~u, II ~ (½e);~o 
n~o0 

(0 < i < k). 

Since T is positive it follows that 

Tnui < inf(Tn,+"ui_ l, T",+n+ lUi_l) 

<= inf(Tn,-, +",+"ui_2, Tn,-i +n,+n+ lUi_ 2, Tn,-, +ni+n+ 2ui_ 2). 

Continuing in this way we obtain 

(6) T"Uk < inf{Tn'+"" +~+~ +if: 0 _--<j < k}. 

Now we define 

~ = n l + . . . + n k ,  gj :=  T'~+Jf--Uk (O<=j<k) .  

Then we have 

k k k 

(k + 1)Tra+kf = 2 Tk-J(Uk + g j ) =  2 T'Uk + ~ Tk-'gj. 
j =0 i -O j=O 

Thus, if we denote 

1 1 k 
m l : = r h + k ,  rl :-~ ~ Uk, SI "-- 

k + l  k + l j = 0  

then we have the fundamental representation formula 

k 

Tin, f= ~. T i r l+s l  (rl, slELP+). 
i = 0  

Moreover, 

13 

Setting 7 :=  (1 - ~(k + 1) -P(g/2)kP) lip < 1 we have shown that 

II Sl lip < < = ~,O,o = ~, II f l i p .  

rf + sf _--< (rl + Sl)" < (Tin'f) p 

implies 

l[ s, II ~ <-- l[ Tm' f  i[ ~ - II r, II ~ < (q" ao)" - [I Uk [I, 

( ° ( 1°t _--< l + ~ ( k + l ) - "  - ( k + l ) - "  4 .  
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Replacing f by s~ then by the same construction there exists r~2~N and 

r2, s2 E LP+ such that 

k 

Te~sl = Y, Tir2+s2, Ils2L--<7 IIs~ II --<-7~llfL • 
i = 0  

Defining now 

we have 

m2 := ml + 1~2, F2 = f2 + T'~2rl 

k k k 

Tm, f  = Tr~'+~'f = Y, T'~,Tir, + Y~ TT2 + s2 = E T'r2 + s2. 
i =0 i =0  i =0  

Continuing in this way we obtain an increasing sequence (m.) in N and 

sequences (r.), (s.) in LP+ such that 

k 

Tm.f  = • Tir.  + s. ,  
i = 0  

Because of 

II s. tl, =< 7" II f [I p- 

k 

2 
i = 0  

TiG I p < T r. 
i 0 

I Tm.fl p 

there exist 0 < i. _< k such that 

Defining now 

we obtain 

1 1 
II T'.r. I1# = k + l  < - - I I  Tm"fllff ~ -k"  

m * : =  m. + i., 

k 

Tm:f  = Y. Tir * + s*, 
i = 0  

r* = Ti.r.,  s * ' =  Ti.s. 

II r* II, ---< k - "" .  II s* I1~ ~ 7". 

Finally, we have 

, r-: i-  r-:+,I,,<__ ( i -  r)(,_o ~" f i r * )  , + I I ( l -  T ) s* l l "  

< [I r~* - T*+~r * II, + 27" 

_-< 2k-Up + 27". 
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Since y < 1 and since ( II T"f lie) is decreasing the assertion (i) follows. 
The proof  is complete if  we can show that (iii) implies (i). Surprisingly this 

part  of  the assertion lies rather deep. To show it we must  use the implication 

(iv) =~ (i) twice. 
We observe first that there exists 0 _< x < y such that 

( . ( l + x ) e + ( l + y ) e +  (y - -x )P) t / e  

% = 1 + X e + yP ' 

otherwise there would exist 0 _-< xn < y . ,  lim Yn = ~ such that 

ae = lim ((1 + x . )  e + ( 1  + y . ) e  + (y _ x . ) e ) t / e .  

, - ~  1 + x ~  + y ~  

But the last limit equals 1 contradicting 

ae >__ ((1 + 0 )  p + ( 1  + 1) e + (1 -- O)']'/P = ( 1 + 2,_l)~/p > 1. 
\ I + 0 e + l  e / 

Assume now that 

(7) sup inf  min( II (Z~f - Z°+ ' f )  + lie, II ( Z " f -  Z~+2f) + l ip)= 1, 
feL+',llfllp<=, heN 

Then for any 0 < e < 1 there exists f, E LP+, II £ lie ---< 1 with 

I I ( Z % - T " + ' f )  + lie>_- 1 - e ,  I I ( Z " f , - T " + 2 f )  + lie>_- 1 - e  ( n ~ N ) .  

Denoting 

u , . , :=  i n f ( T ~ ,  T~+ ' f ) ,  v~.~:= i n f ( T ~ ,  T"+2f,), g~:= y f  - T f  + x T ' - f ~  

we have for any n E N 

u~,, + I(T% - T"+~f~)+ le < (u.,, + (T"f, - Y"+~f,)+) e = IT"f l  e, 

II T% I1# - II (T% - T " + ' f )  + I1# --< 1 - (1 - e) e < p c ,  

and analogous ly  

11 v.,~ lie ~ (pe) ''e 
Since 

( a r  - f ls  - ~,t) + ~ ( a r  - f ls  - max(a,  z)min(r ,  t)) + (r, s, t E L~,  a, fl, ~, E R+) 

(ar  - max(a, fl). max(r,  s) - max(a, ?).  rain(r, t)) + 

we have 
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I T"g~ - T"+Ig, l = lyT"f,  - (1 + y)T"+~f ,  + (1 + x ) T n + 2 f e  - -  xT"+3f~ I 

> ( y T %  - x T n + 3 f e  - (1 ÷ y)T"+2f~) + 

and therefore 

+( (1  +x)T"+Zf~ 

+( (1  + y)T"+~fe 

+( (1  + x)T~ +2fe 

+ ( (1  + y)T" +lf~ 

- (1 + y ) T " + ' f ,  - x T " + 3 f ~ )  + 

- yT"f~ - (1 + x ) T " + 2 f )  + 

- ( 1  + y)v,.,) + 

- ( 1  + y ) u , + ~ . , -  (1 + x)u,+2.,)  + 

- ( l  + y ) u . , , - ( 1  + y)u.+l . . )  + 

II 7 %  - T"+'ge I1# 

II (yr"f, -xr~+3f~ -(1 + y)v,.,) + I1# 

+ II ((l + x ) ( T " + 2 f . -  (1 + y ) u . + , , , -  (1 + x)u,,+2,e) + II; 

+ (1 + y ) .  II (T" +'f ,  - u.,, - u.+,,~) + I1# 

-->((Y II T ~  Ib - x  II T~ +3f. II. - 0  +Y)I1 v.,, II.)+) ~ 

+ ((1 + x)II T" +2f. II9 - ( 1  + y)II u. +,,, I1~ - ( 1  + x)II u. +2,e II.)+)" 

+ ( 1  + y ) ' ( (  II T"+If~ II. - II u.,, II. - II u.+,,, II.)+) ~ 

> ((y(1 - t )  - x - (1 + y) (pe) l / " )+)  v 

÷ (((1 + x)(1 - e) - (1 + y) (pe)  '/p - (1 ÷ x)(pe) ' /P)+)  p 

+ (l + y),((1 - e - ( r e ) ' '  - (pe )" )+)  ". 

Hence 

(8) l im inf  inf  II T"g, - T"+lg, Ilv >((Y - x )  p + ( 1  + x ) "  + ( 1  - yy')~/p. 
e ~ 0  nEN 

Let us now estimate 1] g, [Iv- Since f~ - Vo,, and T~f~ have disjoint carrier we 
obtain 

lie, II'--<( II Y(f, - V o . J + x T 2 £  II, + y  II Vo.. [ [Y  + II Tf~ U# 

- - ( ( f  Ill,  - Vo,~ II; + x ,  II T~f, II;) ' / '  + Y  II vo,e II,) '  + II Tfe II; 

< ((ye + xp)llp + y(pe)Ue)e + 1, 

(9) l im sup }lg, lip --<(YP + x "  + 1) up. 
e ~ 0  
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N o w  (8) and (9) together show that (iii) cannot  hold if  (7) is fulfilled. Thus, by 

contradiction, (iii) implies the existence of  t '  > 0 such that 

i n f m i n (  II (T~f - T~+ ' f )  + I1,, II (Zn f  - T"+2f) + L ) -  -< 1 - e '  
hEN 

( 1 0 )  ( f ~ L ~ ,  I l f l l p  ---- 1). 

Next  we want to deduce from (10) that there exists e" > 0 such that 

(11) i n f l l ( T n f - T " + ~ f )  + lip_- < 1 - e "  ( f ~ Z ~ ,  I I f L _ -  < 1). 
nEN 

To this end l e t f E L ~ ,  II f l l ~  --- 1 be given. I f  I1 (Tn f  - Tn+~J) + II, =< 1 - e'/2 

or infn~N II T~f [I p < 1 - e ' /4 then any 0 < e" < e ' /4 will do it. In the other  case, 
by (10), there exists ml ~ N  such that 

inf II T~f II, >-- I -- e'/4. 
hEN 

II (Tm'f - Tm'+'f) + II, ~ I -- e'/2, 

Denoting 

we have 

u : =  inf(Tm'f,  Tm'+lf) 

[T"u l" + ( T " ( T ' , f  - T m,+'f) +)" <= (T"(u  + (Tm' f  - Tm'+ 'f)+))P 

= I T' ,+~fl  p, 

II T"ull'; > II Tm'+"f[lg - II T"(T",f - T",+'f) + lid 
(12) 

> (1 -- e'/4) p -- (1 - e'/2) p >_-- e'/4. 

We now choose m2 E N so large such that 

(13) inf II T'~2+"u II, >-- (l - e'/4)II Tm2u II,. 
nEN 

By (10) there exists ms such that either 

(14) 

or 

(15) 

In case (14) we denote 

< (1 -- e ' /2)  II Tm2U II II ( Tm2+m'u - -  Tm2+m~+2U) + II. = 

< (1 - -  e ' / 2 )  II Tm'U II ~" II ( rm2+m~u - -  rm2+m'+lu) + I1~ = 

V : =  inf(Tmz+m,u, Tm~+m,+2U) 
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and  by now wel l -known a rguments  we have 

II v lip = > II T"2+"u lip - II ( Tm~+"'u - Tm2+"3+2u) + lip 

> (1 - e ' /4 - 1 + e ' /2) II Tm'u II p 

=> (e,/4) 2" 

Hence  sett ing m : =  ml + m2 + m3 we have 

tl ( T " f -  Tin+if) + Ilg ---< II TroY - v Ill ---< II zmfllff  - II v Ill___ < 1 - (e'/4) 2p 

< 1 - (e'/4) z. 

In case (15) we denote  

/2 :=  inf(Tm2+m,u, Tm2+m3+lu). 

R e p l a c i n g  f by  II Tm2U 117 ITm2u and u by II T"2u II - l a  in (12) we get 

(16) IIY"allff>-_411T"2ullg>-_ (n ~ N ) .  

Sinc T"u < i n f (T ' ,+" f ,  T " , + " + l f )  we have  

a < inf(Tmf, Tin+l f ,  Tm+2f), m : =  ml + m2 + m3. 

In par t icular  

II (Tmf  - Tm+2f) + Ilg --< II T " f -  a IIg --< II T m f l l f f  - II a I1# ---< 1 - (e'/4) 2. 

Hence,  i f  we choose 

0 < e" < min(e ' /4 ,  1 - (1 - (e'/4)/) ~/p) 

then  (11) holds in all possible cases. By the a l ready shown impl icat ion 

( iv)= ,  (i), (10) impl ies  

l im II T " f -  T=+2fllp = 0 ( f ~ L  v) 
n ~ o 5  

and  the assert ion ( i i i )=,  (iv) follows f rom the subsequent  proposi t ion,  which 

i tself  is a consequence  o f  (iv) =* (i). 

1.2. PROPOSITION. I f  

l ira II T n f  - Tn+2f l lp  = 0 ( f ~ L P )  
n ~ c G  

and i f  there exists e > 0 such that 
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lim II T ' f -  T" + i f  I[p < 2 - e 
/1 ~ 0t3 

then we have already 

lim II T " f -  T" + ' f  II ~ = 0 

( f E L  e, 

( f G L e ) .  

II file <= l) 

u . , a '=  inf(T%, T"*tf~), g z : =  fa -- Tf~ 

II u,,z II; ~ II T %  II, ~ - II ( T %  - T ~ + % )  + I1~' ~ S  

and therefore 

II T"gz - T"+lgz l ie= II T %  + T'+=f~ - 2T"+'f6 lie 

>-- II 2 T %  - 2 T " + %  I1~ - II T " + %  - T %  I1~ 

= 2( II T %  - u.,z IIg + II T ' + %  - u.,z lie) ''~ 

- II Z " + %  - T %  I1~ 

>_- 2(( II T %  lie - II u..z I1~) e 

+ (  II Z"+'f~  lie - II u..z II )p), ,e  

- II T " + %  - T %  I1~. 

Hence for any 0 < g < 1 there exists n~ E N such that 

II T"g~ - T"+iga lip >-- 2((1 - g,/p)e + (1 - ~,,e)p)t/p _ ~ (n >= na) 

contradicting 

lim sup II T"g - T ~ + lg II p --< (2 - t)II g II ~ (g ~ t ° ) .  
n ~ o o  

It may very well happen that II T"T- T"+l f l lv  = 2 for a n f E L  p, II f l l  = 1. 
On the other hand, the next example shows that condit ion 1.1(iv) cannot be 

weakened. For an operator S on L p, III s II1~ will be its operator norm. 

we have 

Setting 

PROOF. Assume that 1.1 (iv) does not hold. Then for any 0 < g < 1 there 

exis tsf6EL~. ,  l i b  II =< 1 with 

l im II (Tnf~ - T"+'f6) + lie >---(1 - ~ ) " ~ .  
n ~ N  
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1.3.  EXAMPLE. 

/a and z: f l  --- f l  be defined by 

z ( 1 ) =  2, 

Then 

R. WITTMANN Isr. J. Math. 

Let ~ ' =  { 1, 2, 3} be endowed with the counting measure 

z ( 2 ) = 3 ,  z(3) = 1 .  

Tf: = f o  x 

defines an isometry in L v ~ )  for any 1 ~ p _-< .x~. Hence if  

lim [[ T ~ f -  T n + I f  [[ v = 0 
/ I ~ O C  

then f = T f a n d  therefore f = 1. 
In order to calculate the operator norm []] T" - T " +l [[[p = [[[ I - T ]lip we 

identify functions on f l  with vectors in R 3. We have 

U ( x .  y .  z )  - T ( x .  y .  z )  lip - -  ( I x  - y I p + t Y - z I p + I x  - z : ) l ' ,  

(1) (1 < p < oo). 

Choosing z = - 1, 0 ~< x _-< y we see that [[[ I - T [[[v >_- %. 

Let now (x, y ,  z), I[ (x, y ,  z) I[v -- 1 be such that  

1[ (x,  y ,  z)  - T (x ,  y ,  z)  [[v -- ][11 - T lily. 

By (1) x,  y ,  z cannot all have the same sign. Since the fight hand side of  (1) is 

symmetr ic  in x ,  y ,  z we may assume that  z < 0 < x _-< y.  I f  1 < p < oo then we 

must  have z < 0, otherwise 

[] ( I -  T) (x ,  y ,  z)  lip= ( [ x - y [ V  + 1) ~'p <- 2 I'p < ( 1  + 2v-~) '/p 

= (I  - T ) ( 2  ~/p, _ 2 uv, 0) .  

Setting x '  :-- x~ - z ,  y '  = y / -  z we obtain 

Illl - Tlllp = Izl - ' ( l x ' - y ' :  + l y ' +  II p + I x ' +  l ip) TM 

=(lx' + IIP + Iy' + IIV + Ix'-y'Iv) '/p ~ap 
1 + Ix ' l  p + ly ']  p 

provided 1 < p < 0o. I f p  = 1 then % = 2 and  ][[ I - T [[[v< % is trivial. Since 

the adjoint  operator  T* is of  the same type, i.e. 

T*f  = f o T-  ', 

we have also 
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I l l l -  T* I I I , = - ,  (1 ~ p < o o ) .  

Hence 

11[ I - T I[[ ~ = Ill I - T* Ill, = 2. 

1.4. Estimates for a,. We have already seen in the proof  of  Theorem 1.1 

that  

(a) ( l  + 2 ' - ' )  ''~ _-< ~,. 

Let T be the operator of  Example 1.3. Then 

- ,  -- Ill I - T Ill, = Ill I - T* Illq = ,~q 

implies 

(b) % = a q ( l < p , q < ~ ,  l / p + l / q = l ) .  
By the interpoation theorem of  M. Riesz [9] we have 

(c) p ~ log ap is a convex function on [ 1, ~ [ .  Note that  Riesz's original 

theorem is valid also for real L p space, whereas Thorin 's  generalization holds 

only for complex L p spaces. 

Since I - T is a normal  operator on L 2 we have 

III I - T 1112 = sup{ 121:2 u C  eigen value o f / -  T}. 

This is well known for the operator norm on the complexification of  L 2, but for 

p = 2 the complex and the real operator  norm are equal. Obviously T has the 

eigen values 

1, e 2 in /3  , e 4in/3 

and therefore I - T has the eigen values 

O, 1 - -  e 2ix/3, 1 - -  e 4in/3. 

Finally we get 
(d)  ot 2 = [ 1 - e2in/3[ = x/3. 

From (b), (c), (d) one gets an upper estimate for %. In particular we have 

( e ) % < 2 ( l < p < o o ) .  

Since, for any f E  LP+, [I T " f -  7" + ' f  I[ ~ --< 
following "0 -2  ~/p" law. 

II T~f IIg ~ 2 II f IIg we o b t a i n  the  

1.5. COROLLARY. 

sup lim ]] T " f -  T"+~f[[ E{0,  2uP}. 
fEL+P,~fU,<-I  n ~ o o  

1.6. COROLLARY. I f  one of  the conditions in Theorem 1.1 holds, then for 
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any f ~ L  p the LP-convergence of  A , f : =  (1/n)Z~£~T~f implies the 
LP-convergence of T"f (both limits are of course equal). I f  p > 1 then A , f  
converges always in L p by the mean ergodic theorem. 

PROOF. By Krengel [5], p. 73 we have the decomposition 

where 

M = I V + F  

M : =  {fELP: Jim A. fex i s t s} ,  

N: = { f -  Tf: f E  L p }, 

F : =  {fELP: Tf  = f}. 

Hence we need to prove our assertion only f o r f ~  N a n d f ~  F. F o r f E  F this is 
trivial and for f E N  this follows from Theorem 1. t. 

We have the following uniform variant of Theorem 1.1 and Corollary 1.6. 

1.7. Tnv.OREM. The following conditions are equivalent: 

(i) lim,_o~ Ill 7" - T" +' l ib  = 0. 
(ii) There exists e > 0 and n ~ N such that 

tl T " f -  T"+'fll <(1  --e)2 l/v (fELP+, I l f l l p  = < 1). 

(iii) lim,_o, III T" - T" +' IIIp < '~ .  

(iv) inf.~N supi~L,+,nln,=<l II ( T " f -  T " + ' j 9 +  Ib < 1. 
I f  T is also uniformly ergodic (cf. Krengel [5], p. 86) and one of the above 

conditions is fulfilled, then there exists a projector P: L p ---" L v with III P lib --< 1 

and 

lim III T" - e lib = 0. 

PRooF. The proof  of Theorem 1.1 can be made "uniform" by experienced 
readers. For more details the reader is referred to our forthcoming paper where 

the uniform result 1.10(b) is proved. 
For the proof  of the second assertion we note first that N : = { f -  Tfi f E  L p } 

is closed in L p by Krengel [5], p. 87. We can write 

L p = N @ F ,  F:= { f E L P : T f = f }  

by Krengel [4], p. 73. Thus the operator (I - T) is a continuous bijection of the 
Banach space N into itself. Hence by the open mapping theorem there exists a 
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bounded  operator S: N ~ N such that (I - T )S  = I. Using now 1.70) we get 

lim sup { [[ T~g [[p: g E N ,  [[ g lip _--< 1} 

= lim sup ( [I (T" - T"+')Sg II; g ~ N ,  l[ g lie =< 1} 
n ~ 0 0  

= 0 .  

Recalling the decomposi t ion L p = N ~ F  the assertion with P =  
limn-o~ ( l /n )  Z~-I t T i is now immediate.  

I f  T is also compact  (quasi-compactness would be enough), then much more  

than Theorem 1.1 and Corollary 1.6 is true: 

1.8. COROLLARY. Assume that T ~o is also a compact operator for an no ~ N. 

Then the folowing conditions are equivalent: 

(i) l imn-~ III Tn -- T~+'llls = 0. 
(ii) lim~_o~ II T ~ f  - T~+~fIIp < 2'/~ ( f ~ L ~ ,  II fl l~ =< 1). 
(iii) l imn_~ II T n f -  Z~ + ' f  II ~ < % ( f ~  t ~ ,  II f II ~ =< 1). 

Moreover, i f  one o f  the above conditions is fulfilled then there exists a projector 

P: L p ~ L p with finite dimensional range, III P lib --- 1 and 

lim Ill Tn - e Ill~ = 0. 
n ~ o o  

PROOF. Let X(resp.  X+) be the closure in L p of  

{T"of'.f~LP, Ilfll,---< 1) (resp. {T"of ' . feL;+, I l f l l ,  =< 1)). 

By our assumption both sets are compact  and the functions 

~,0O :=  II (T" - T"+ ' ) f l l  p 

are continuous on X and X+. The sequence (~,) is also decreasing. Hence 
q~ : = inf~ ~0~ is upper semi-continuous on the compact  sets X, X+. If  now (iii) 
holds then sup ~o(f): f ~ X }  < %. Fur thermore  {~n < (1 + 2 p- ~)t~p} defines an 
increasing sequence of  open sets covering X. 

By compactness there exists n E N such that ~, < %. This means exactly 

III T" + ~0 - T" + n0+' II I < %. 

Hence 1.7(iii) is satisfied. Replacing (iii) by (ii) and X b y  X+ one can see by the 

same method that (ii) implies 1.7(ii). Since T is also uniformly ergodic by 

Krengel [5], p. 89, the assertion follows from Theorem 1.7. 
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Finally we want to show that a recent uniform "0-2" law of Zaharopol [ 11] 

for 1 < p < ~ ,  p ÷ 2 and of  Katznelson and Ttzafriri [4] in the general case 

follows from Theorem 1.7. To this end we recall that the linear space of all 

differences of  positive operators in L p is a vector lattice under its canonical 

order (cf. Schaefer [10], p. 229). In particular the infimum T~^T: and the 

modulus I T~ - T21 :=  T, + T2 - 2TI^T2 of two positive operators exist. 

1.9. COROLLARY. I f  l i m s u p , _ ~ l l l l T " - T n + l l l l l p < 2 ,  then we have 
limn_o~ III zn -- T~ +' II1~ = 0. 

PROOf. By Zaharopol [ 11 ], Proposition 4.2 there exists 6 > 0 such that, for 

any f ~  Lp with II f II p --< 1, either 

(1) U T" + i f  II ~ ---< 1 - 6/2 
o r  

(2) II T"+'fI[p = 1 - 0/2, II ( T"+~ - ZnAT"+')fll < 1 - g 
holds. In case (1) we have 

II T " f -  T"+ t r l l  p <  T"+ ' f )  + ( T " + ' f  T"f) + J , ,~  = II (T"f- I1~ + II - f -  II; 

<= 1 + (1 - 6 / 2 )  p. 

In case (2) we put u :=  inf(T"f, T"+~J ") <= (TnAT"+~)f. Then 

II u I1~ = II T=+ ' f l lp  - II ( T " + ' -  T"AT=+')fII~ => 1 - 6 / 2 - ( I  -6)=6/2 

implies 

U T ~ f -  Tn + ' f  II # = II T ~ f -  u II # + II T" + ' f -  u II # 

II T~f U g - II u I1# + II Tn + ~ f  I1# - II u U g 

< 2(1 - (6/2)P). 

Thus condition 1.7(ii) holds in all cases. 

1.10. REMARKS. (a) In a forthcoming paper we will show a non-uniform 

variant of  Corollary 1.9, i.e. the existence of  an e > 0 with 

l imsuPll  I T " -  T n + ~ l f l l p < 2 - e  ~ L  p) 
/ / ~ 0 0  

implies already 

l i m  II ( T" - T ~ + ' ) f l l ~  = O. 
n ~ o o  

This result cannot be shown by the method of Katznelson and Tzafriri [4]. 
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(b) In that paper we will also show that 

lim sup III I T ~ - T ~ +'1 IIIp < 2 

implies the stronger conclusion 

lim Ill I T" - T" +11 IIIp =- 0. 
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2. P o s i t i v e  c o n t r a c t i o n  in  C(X) a n d  L ~ 

In this section B will be either the Banach space of  continuous functions on a 

compact space X or the space L ~ with respect to a a-finite measure space. We 
denote by B+ the cone of  non-negative elements. Of  course, the L ~ case is a 

special case of  the C(X) case, by the Stone representation, but the point is that 

the proofs can be done directly in L ~. 

2.1. THEOREM. For a positive, linear contraction T: B ~ B the following 

conditions are equivalent: 

(i) l im,_~ II T " f -  T"+'f l l  = 0 ( f E B ) .  
(ii) There exists e > 0 such that 

lim II T " f -  T ~ + i f  II < 1 - e 

(iii) There exists e > 0 such that 

and 

PROOF. 

( f E B + ,  I l f l l  ==-1). 

lira II T~ 1 - T ~ +'  1 II < 2e  
n ~ o 5  

lim II T~f - T"+' f l l  < 2 ( 1  - e )  
n ~  

( f ~ B ,  I l f l l  ~ 1). 

(i) ==, (ii) and (i) =* (iii) are obvious. Assume now that (ii) holds and 

let f E B + ,  l[ f II ~ 1 be given. Then there exists nl E N  such that 

U ( T " ' f - T " ' + l f )  + II =< l - e ,  I [ ( T " , - ' f - T " , f )  + U --< 1 - e .  

For h :=  inRe, T",f, 7", + l j )  we have 

II h II ---< ~, II T " , f -  h II --< 1 - e, II T", + ' f -  h II --< I - e. 

Hence, putting 

u, :=  ½h, v, :=  ½ ( T ( T m f -  h) + T",+~f - h) 
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we get 

T~,+I f  = ½(Th + T ( T ~ , f  - h)  + h + (T",+~f  - h))  = u~ + Tu,  + v~ 

and 

II u, II --< el2, II ]yl II =< ½( II T " , f -  h II + II T " ' + ' f  - h I I )  =< 1 - e. 

From now on the proof  is essentially the same as in [8]. R e p l a c i n g f b y  v, the 

above construction yields u2, v2 ~ B÷, /~2 ~ N such that 

T ~ P ' v j = a 2 + T a 2 + v 2 ,  Ila:l l  =<½ellv, ll, I Iv=l l - - -<(1-OIIv ,  ll. 

Defining 

n2 : =  n l + r l 2 +  1, U2 : =  /,12-1t- Tr~2+lUl 

we have 

T"~+lf  = u2 + Tu2 + v2, II u2 II ---< ½e + ½e(l -- e), II v2 II ---< (1 -- e) 2. 

Continuing in this way we can construct sequences (ui), (vi) in B÷ and (n~) such 

that 

Tn,+ i f  = ui + Tui + vi, II v, II ---< (1 - O ' ,  

/~i- l  
U i < ~  2 ( 1 - - e ) J < ½  • 

j=O 

Let now 6 > 0 be given. Choosing i so large such that (1 - ~)~ < c~ and setting 

m l : =  n , + l ,  r l : =  ui, s~ := vi 

we have the representation 

Tm, f  = r, + Tr, + s,, II r, II =< ½, II s, II =< ~- 

R e p l a c i n g f b y  r, we can find fi t2~N, r2, g2EB+ with 

T'h2r,=r2+TrE+g2, IIr211 ~-~, 

Defining m2 :=  fit, + m2, s2 :=  T'~2s~ + (I  + T).¢2, 

Tm2f = (Z + T)2r2 + s~, II r2 II =< -L 

II e, II ~ ½~. 

II s2 U ~ 2~. 

Continuing in this way we can construct (rk), (Sk) in B+ and (mk) such that 

Tm~f = (I  + T)krk + Sk, II rk II ---< 2-k ,  II sk II --< ~ .  
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In particular, for even k E N we have 

{I Tr~k f -- Tm~ + i f  II = II (I  - T)(I + T)krk + Sk II 

=< II s~ II + II rk II + II Tk+lrk II 

+ ~, ( k i ) - ( i _  kl) I lIT% II 

<=k~+ 2 l-k + 2-k2 k/2 

since (7) - (ik-~) is increasing on 1 < i < k/2 and decreasing on k/2 <-_ i ~ k. 
Choosing ~ > 0 sufficiently small we can find for any even k ~ N an n ~ N such 

that 

= 2 k / 2  " 
II T"N- T" + i f  II < 3- k 

By Stirling's formula the expression on the right side tends to 0 and (i) follows. 

Assume now that (iii) holds and let 0 < g < 1 be given. Putt ing f :  = g - 1 

we have 

I l f l l  _<l,  g=½f+½. 

Applying (iii) to f w e  get 

l im II Y~g --  T" + 'g II ~ l im ½ II Y ~ f -  T" + ' f  II ÷ l im ½ II T" 1 - T" +' 1 II 

where 

< l - e '  

e' : =  e -  l im ½ II T n l -  Tn+' l  II > 0 .  
n ~ c t 3  

Hence (ii) is satisfied if we replace e by the above e'. 

2.2. REMARKS. (a) It is an open quest ion whether  the condi t ion 

lim II T"I  - Tn+' l  II < e  
n ~ o o  

can be removed.  

(b) Analogues of  Corollary 1.6, Theorem 1.7, Corollary 1.8 hold also in the 

present setting with no change of  proof, since the special propert ies of 

LP-norms were not used there. 
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(c) It is a natural question whether Theorem 2.1 holds for general Banach 
lattices. We have no counterexample. Under additional conditions on T 
Greiner and Nagel [3] have given a different kind of"zero-two" law for very 
general Banach lattices. Recently H. H. Schaefer (private communication) 
generalized the Zaharopol-Katznelson-Tzafriri Theorem (Corollary 1.9) to 
arbitrary Banach lattices. 
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